Vection during conflicting multisensory information about the axis, magnitude, and direction of self-motion.
نویسندگان
چکیده
We examined the vection induced by consistent and conflicting multisensory information about self-motion. Observers viewed displays simulating constant-velocity self-motion in depth while physically oscillating their heads left-right or back-forth in time with a metronome. Their tracked head movements were either ignored or incorporated directly into the self-motion display (as an added simulated self-acceleration). When this head oscillation was updated into displays, sensory conflict was generated by simulating oscillation along: (i) an orthogonal axis to the head movement; or (ii) the same axis, but in a non-ecological direction. Simulated head oscillation always produced stronger vection than 'no display oscillation'--even when the axis/direction of this display motion was inconsistent with the physical head motion. When head-and-display oscillation occurred along the same axis: (i) consistent (in-phase) horizontal display oscillation produced stronger vection than conflicting (out-of-phase) horizontal display oscillation; however, (ii) consistent and conflicting depth oscillation conditions did not induce significantly different vection. Overall, orthogonal-axis oscillation was found to produce very similar vection to same-axis oscillation. Thus, we conclude that while vection appears to be very robust to sensory conflict, there are situations where sensory consistency improves vection.
منابع مشابه
Vection in depth during consistent and inconsistent multisensory stimulation in active observers
The study of visual illusions of self-motion, or vection, has a long history of research dating back to its first descriptions by Helmholtz (1867). Early vection studies tended to induce vection in physically stationary observers or passively moved observers (externally generated perceptions of self-motion). It has not been until recently that studies have examined this experience in actively m...
متن کاملCyclopean stimulation can influence sensations of self-motion in normal and stereoblind subjects.
Subjects experienced an illusion of self-motion when viewing the randomly patterned inner surface of a cylinder rotating about their main body axis. This sensation of rotation in a direction opposite to the direction of cylinder rotation is known as circular vection. An experiment was conducted to ascertain if the production of circular vection involved a binocular process in the visual system....
متن کاملVirtual swimming--breaststroke body movements facilitate vection.
Visually induced illusory self-motion (vection) was facilitated by active breaststroke arm and body movements. Optic flow was generated by having the standing observer make these arm movements, which were detected by Kinect and incorporated into the display. When generated, this optic flow was either expanding (i.e. congruent with the observer's head motion) or contracting (i.e. incongruent wit...
متن کاملOptic-flow selective cortical sensory regions associated with self-reported states of vection
Optic flow is one of the most important visual cues to the estimation of self-motion. It has repeatedly been demonstrated that a cortical network including visual, multisensory, and vestibular areas is implicated in processing optic flow; namely, visual areas middle temporal cortex (MT+), V6; multisensory areas ventral intra-parietal area (VIP), cingulate sulcus visual area, precuneus motion ar...
متن کاملVection in depth during consistent and inconsistent multisensory stimulation.
We examined vection induced during physical or simulated head oscillation along either the horizontal or depth axis. In the first two experiments, during active conditions, subjects viewed radial-flow displays which simulated viewpoint oscillation that was either in-phase or out-of-phase with their own tracked head movements. In passive conditions, stationary subjects viewed playbacks of displa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Perception
دوره 41 3 شماره
صفحات -
تاریخ انتشار 2012